Evidence Based Dentistry

Biostatistics

Asbjorn Jokstad Institute of Clinical Dentistry,

University of Oslo, Norway

1.Clinical Trials
 2.Metanalysis
 3.Prognosis
 4.Diagnostic tests

Clinical trials

What can you show with a trial?

The truth

What can you show with a trial?

Type 1 error Alfa error Optimism error

A is better
A is no better
than B
What the
trial shows than B

The truth

A is better	A is no better
than B	than

Type 1 error

Fallacies of observed clinical success

- Spontaneous remission
- Placebo response
- Multiple variables in treatment
- Radical versus conservative treatment
- Over-treatment
- Long-term failure
- Side effects and sequelae of treatment

What can you show with a trial?

The truth

Type 2 error

1. Underpowered study
2. Fallacies of observed clinical failures

- Wrong diagnosis
- Incorrect cause-effect correlations
- Multifactorial problems
- Lack of cooperation
- Improper execution of treatment
- Premature evaluation of treatment
- Limited success of treatment
- Psychological barriers to success

Meta-analysis

Meta-analysis

An overview with a specific statistical technique which summarizes the results of several studies into a single estimate

Meta-analysis/Systematic Review

- Systematic Review
- Exhaustive exploration, critical evaluation and synthesis of all the unbiased evidence
- Meta-analysis
- Exhaustive exploration, critical evaluation and quantitative synthesis of all the unbiased evidence
- Combination of the results of a number of related randomised trials

Odds ratio = (A/B)/(C/D)
Relative risk $(\mathrm{RR})=[\mathrm{A} /(\mathrm{A}+\mathrm{B})] /[\mathrm{C} /(\mathrm{C}+\mathrm{D})]$

		Adverse outcome	
		-	
Treat ment	+	A	B
	-	C	D

Odds ratio $=(\mathrm{A} / \mathrm{B}) /(\mathrm{C} / \mathrm{D})$
Relative risk(RR)= $\mathrm{A} /(\mathrm{A}+\mathrm{B})] /[\mathrm{C}(\mathrm{C}+\mathrm{D})]$
Relative risk reduction (RRR) $=1-\mathrm{RR}$
Absolute risk reduction(ARR)=A/(A+B)-C/(C+D)
Number needed to treat $=1$ ARR

Odds Ratio

Therapeutic gain

Odds Ratio

If you want more of something to happen, such as greater reduction in new cavities and the experimental intervention is successful
the results will show in the right-hand side

Odds Ratio

Clarkson I, Worthington H. Prevention and treatment of oral mucositis and oral candidiasis for patients with cancer

Effect of study methodology on validity

Diagnostic "gain"

Favours treatment
Favours control

Schulz 1995
Moher 1998
Kjaergard 2000
Combined

Concealment of allocation
(inadequate or unclear versus adequate)

Schulz 1995
Moher 1998
Kjaergard 2000
Jüni 2000
Combined
Double blinding (absent versus present)

Schulz 1995
Moher 1998
Kjaergard 2000
Jüni 2000
Combined

$0.66(0.59$ to 0.73$)$
0.63 (0.45 to 0.88)
0.60 (0.31 to 1.15)
0.79 (0.70 to 0.89)
$0.70(0.62$ to 0.80$)$
0.83 (0.71 to 0.96)
1.11 (0.76 to 1.63)
0.56 (0.33 to 0.98)
$0.88(0.75$ to 1.04$)$
$0.86(0.74$ to 0.99$)$

Effects of

 inadequate study design on resultsJüni et al.Methodological quality of controlled trials and effect estimates. BMJ 2001.

Prognosis

Prognosis - likelihood estimates

- Proportion of survival or success according to some specific criteria after a given temporal interval, e.g. after 1 or 5 years
- Median time of survival (in years), where 50\% of the study unit, e.g. the patient, prosthesis, restorations or tooth, have failed, or
- Survival curves - describe for each time unit along a horizontal axis estimates of the proportion of the study unit that remain intact according to survival or success according to some specific criteria

Survival Curves

Intraoral location

McLaren \& White. J Prosthet Dent 2000

Hemmings et al. J Prosthet Dent 2000

time (months)

Napankangas et al. J Oral Rehabil, 2006

Kaplan-Meier Survival Curve for the Three Treatment Categories

Aquilino et al. J Prosthet Dent 2001

Erpensten et al. J Prosthet Dent 2001

Sjögren et al. J Prosth Dent 1999

Malament et al. J Prosth Dent 1999

Implants freestand vs connected

Naert et al., Clinical Oral Implants Research, 200128

Etch bridges

Creugers et al. J Dent 2001

Prognosis - Precision of the likelihood estimates

- All good clinical prognosis studies include measures of confidence intervals for prognosis-estimates
- A 95\% confidence interval consists of two values that indicating an interval where we can be 95\% certain that the true value lies
- A narrow confidence interval is an indication of a precise estimate of the true value

Sample size and confidence interval

Malament et al. Survival of Dicor glass-ceramic dental restorations

Diagnostic tests

Assessment of the efficacy of a diagnostic test

Parameter

Description, e.g.Sensitivity
Specificity
Positive predictive valuetest is
Negative predictive value
Measurement validity
standard
Measurement reliabilityDiagnostic validity

Ability to identify patients in a patient population
Ability to identify non-patients in an asymptomatic population
Ability of a diagnostic test to identify a patient correctly, given that the positive
Ability of a diagnostic test to identify a nonpatient correctly, given that the test is negative
The accuracy of a measurement technique when compared with a known

The variability of the measurements over time and in different envirorunents
The ability to separate those with the disease from those without the33

Sensitivity and Specificity

- Sensitivity
- Probability that a subject with the disease will screen positive
- Specificity
- Probability that a subject who is disease free will screen negative

2×2 Tables

	Disease Present	Disease Absent	
Test Positive	a	b	$\mathrm{a}+\mathrm{b}$
Test Negative	c	d	$\mathrm{c}+\mathrm{d}$
	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

Sensitivity

	Disease Present	Disease Absent		$\begin{aligned} & \text { Sensitivity } \\ & =\frac{\underline{a}}{a+c} \end{aligned}$
Test Positive	215	16	231	
Test Negative	15	114	129	
	230	130		

Specificity

	Disease Present	Disease Absent		
Test Positive	215	16	231	Specificity $=$d b+d
Test Negative	15	114	129	
	230	130		
1144	$=87 \%$			

Positive and Negative Predictive Values

- Positive Predictive Value
- probability of those testing/screening positive actually having the disease
- Negative Predictive Value
- probability of those testing/screening negative NOT actually having the disease

Relevant when you know the prevalence of the disease in the population.

Positive Predictive Value

	Disease Present	Disease Absent			
Test Positive	215	16	231		
Test Negative	15	114	129	\quad	$\frac{215}{231}$
:---					

Positive predictive value $=a / a+b$

Negative Predictive Value

	Disease Present	Disease Absent			
Test Positive	215	16	231		
Test Negative	15	114	129	\quad	$\frac{114}{129}$
:---:					

Negative predictive value $=\mathrm{d} / \mathrm{c}+\mathrm{d}$

Likelihood Ratio

Indicates the value of the test for increasing certainty about a positive diagnosis

$$
\begin{aligned}
& \frac{\text { Sensitivity }}{1-\text { Specificity }} \\
& =\frac{215 / 230}{1-114 / 130}=8
\end{aligned}
$$

