Evidence Based Dentistry

Biostatistics

Asbjorn Jokstad Institute of Clinical Dentistry, University of Oslo, Norway

21 Jan 2003

1.Clinical Trials 2. Metanalysis **3.**Prognosis 4. Diagnostic tests

Clinical trials

21 Jan 2003

What can you show with a trial?

The truth

What can you show with a trial?

Type 1 error

Fallacies of observed clinical success

- Spontaneous remission
- Placebo response
- Multiple variables in treatment
- Radical versus conservative treatment
- Over-treatment
- Long-term failure
- Side effects and sequelae of treatment

What can you show with a trial? The truth A is no better A is better than B than B A is better Х What the than B trial shows A is no better than B Type 2 error **Beta error Pessimism error**

7

Type 2 error

- Underpowered study
 Fallacies of observed clinical failures
- Wrong diagnosis
- Incorrect cause-effect correlations
- Multifactorial problems
- Lack of cooperation
- Improper execution of treatment
- Premature evaluation of treatment
- Limited success of treatment
- Psychological barriers to success

Meta-analysis

Meta-analysis

An overview with a specific statistical technique which summarizes the results of several studies into a single estimate

Meta-analysis/Systematic Review

- Systematic Review
 - Exhaustive exploration, critical evaluation and synthesis of all the unbiased evidence
- Meta-analysis
 - Exhaustive exploration, critical evaluation and quantitative synthesis of all the unbiased evidence
 - Combination of the results of a number of related randomised trials

Odds ratio = (A/B)/(C/D) Relative risk (RR) = [A/(A+B)]/[C/(C+D)]

		Adverse		
		outcome		
		+		
Treat ment	+	A	B	
	_	С	D	

Odds ratio = (A/B)/(C/D) Relative risk(RR)= [A/(A+B)]/[C(C+D)] Relative risk reduction (RRR) = 1 - RR Absolute risk reduction(ARR)=A/(A+B)-C/(C+D) Number needed to treat = 1/ARR

following a minor surgical procedure if you prescribe a particular tablet and the experimental intervention is successful

the results will show in the left-hand side

Clarkson I, Worthington H. Prevention and treatment of oral mucositis and oral candidiasis for patients with cancer

17

Favours Control

Studies of lower methodological quality, particularly those including non-representative patients or applying different reference standards, tend to overestimate the diagnostic performance of a test. Lijmer et al. JAMA, 1999; 282: 15.

Streptokinase for infarction

Effects of inadequate study design on results

Jüni et al.Methodological quality of controlled trials and effect estimates. BMJ 2001.

Ratio of odds ratios

Prognosis

Prognosis – likelihood estimates

- Proportion of survival or success according to some specific criteria after a given temporal interval, e.g. after 1 or 5 years
- Median time of survival (in years), where 50% of the study unit, e.g. the patient, prosthesis, restorations or tooth, have failed, or
- Survival curves describe for each time unit along a horizontal axis estimates of the proportion of the study unit that remain intact according to survival or success according to some specific criteria

Survival Curves

Intraoral location

McLaren & White. J Prosthet Dent 2000

Etch bridges

Creugers et al. J Dent 2001

Fig. 1. Survival curves (S₄) of maxillary (n = 34) and mandibular (n = 56) 'replacement' posterior resin-bonded bridges (Kaplan-Meier).

Prognosis - Precision of the likelihood estimates

- All good clinical prognosis studies include measures of confidence intervals for prognosis-estimates
- A 95% confidence interval consists of two values that indicating an interval where we can be 95% certain that the true value lies
- A narrow confidence interval is an indication of a precise estimate of the true value

Sample size and confidence interval

Malament et al. Survival of Dicor glass-ceramic dental restorations over 14 years. J Prosth Dent 1999

31

Diagnostic tests

Assessment of the efficacy of a diagnostic test

Parameter	Description, e.g.		
Sensitivity	Ability to identify patients in a patient population		
Specificity	Ability to identify non-patients in an asymptomatic population		
Positive predictive value test is	Ability of a diagnostic test to identify a patient correctly, given that the positive		
Negative predictive value	Ability of a diagnostic test to identify a non- patient correctly, given that the test is negative		
Measurement validity	The accuracy of a measurement technique when compared with a known		
standard			
Measurement reliability	The variability of the measurements over time and in different envirorunents		
Diagnostic validity	The ability to separate those with the disease from those without the ³³		

disease

Sensitivity and Specificity

- Sensitivity
 - Probability that a subject with the disease will screen positive
- Specificity
 - Probability that a subject who is disease free will screen negative

2 x 2 Tables

	Disease Present	Disease Absent	
Test Positive	a	b	a+b
Test Negative	С	d	c+d
	a+c	b+d	a+b+c+d

Sensitivity				
	Disease Present	Disease Absent		
Test Positive	215	16	231	Sensitivity = <u>a</u>
Test Negative	15	114	129	a+c
	230	130		
$\frac{215}{220} = 93\%$				
	230			36

Specificity

	Disease Present	Disease Absent		
Test Positive	215	16	231	Specificity = <u>d</u>
Test Negative	15	114	129	b+d
	230	130		
		<u>114</u> 130	= 879	%

37

Positive and Negative Predictive Values

Positive Predictive Value

- probability of those testing/screening positive actually having the disease
- Negative Predictive Value
 - probability of those testing/screening negative NOT actually having the disease

<u>Relevant when you know the prevalence of the</u> <u>disease in the population.</u>

Positive Predictive Value

	Disease Present	Disease Absent		
Test Positive	215	16	231	<u>215</u> 231
Test Negative	15	114	129	= 93%
	230	130		

Positive predictive value = a / a+b

Negative Predictive Value

	Disease Present	Disease Absent		
Test Positive	215	16	231	
Test Negative	15	114	129	<u>114</u> 129
	230	130		= 88%

Negative predictive value = d/c+d

Likelihood Ratio

Indicates the value of the test for increasing certainty about a positive diagnosis

Sensitivity

1 - Specificity = 215/230 = 8

<u>1- 114/130</u>

Likelihood ratio nomogram

